图书介绍
物理学家用的随机过程【2025|PDF|Epub|mobi|kindle电子书版本百度云盘下载】

- (美)K.雅各布斯著 著
- 出版社: 北京;西安:世界图书出版公司
- ISBN:9787519244668
- 出版时间:2018
- 标注页数:188页
- 文件大小:25MB
- 文件页数:201页
- 主题词:物理学-随机过程-英文
PDF下载
下载说明
物理学家用的随机过程PDF格式电子书版下载
下载的文件为RAR压缩包。需要使用解压软件进行解压得到PDF格式图书。建议使用BT下载工具Free Download Manager进行下载,简称FDM(免费,没有广告,支持多平台)。本站资源全部打包为BT种子。所以需要使用专业的BT下载软件进行下载。如BitComet qBittorrent uTorrent等BT下载工具。迅雷目前由于本站不是热门资源。不推荐使用!后期资源热门了。安装了迅雷也可以迅雷进行下载!
(文件页数 要大于 标注页数,上中下等多册电子书除外)
注意:本站所有压缩包均有解压码: 点击下载压缩包解压工具
图书目录
1 A review of probability theory1
1.1 Random variables and mutually exclusive events1
1.2 Independence4
1.3 Dependent random variables5
1.4 Correlations and correlation coefficients6
1.5 Adding independent random variables together7
1.6 Transformations ofa random variable8
1.7 The distribution function10
1.8 The characteristic function10
1.9 Moments and cumulants12
1.10 The multivariate Gaussian13
2 Differential equations16
2.1 Introduction16
2.2 Vector differential equations17
2.3 Writing differential equations using differentials18
2.4 Two methods for solving differential equations18
2.4.1 A linear differential equation with driving20
2.5 Solving vector linear differential equations21
2.6 Diagonalizing a matrix23
3 Stochastic equations with Gaussian noise26
3.1 Introduction26
3.2 Gaussian increments and the continuum limit28
3.3 Interlude:why Gaussian noise?31
3.4 Ito calculus32
3.5 Ito’s formula:changing variables in an SDE35
3.6 Solving some stochastic equations37
3.6.1 The Ornstein-Uhlenbeck process37
3.6.2 The full linear stochastic equation39
3.6.3 Ito stochastic integrals40
3.7 Deriving equations for the means and variances41
3.8 Multiple variables and multiple noise sources42
3.8.1 Stochastic equations with multiple noise sources42
3.8.2 Ito’s formula for multiple variables44
3.8.3 Multiple Ito stochastic integrals45
3.8.4 The multivariate linear equation with additive noise48
3.8.5 The full multivariate linear stochastic equation48
3.9 Non-anticipating functions51
4 Further properties of stochastic processes55
4.1 Samplepaths55
4.2 The reflection principle and the first-passage time57
4.3 The stationary auto-correlation function,g(τ)59
4.4 Conditional probability densities60
4.5 The power spectrum61
4.5.1 Signals with finite energy63
4.5.2 Signals with finite power65
4.6 White noise66
5 Some applications of Gaussian noise71
5.1 Physics:Brownian motion71
5.2 Finance:option pricing74
5.2.1 Some preliminary concepts75
5.2.2 Deriving the Black-Scholes equation78
5.2.3 Creating a portfolio that is equivalent to an option81
5.2.4 The price of a“European”option82
5.3 Modeling multiplicative noise in real systems:Stratonovich integrals85
6 Numerical methods for Gaussian noise91
6.1 Euler’s method91
6.1.1 Generating Gaussian random variables92
6.2 Checking the accuracy of a solution92
6.3 The accuracy of a numerical method94
6.4 Milstein’s method95
6.4.1 Vector equations with scalar noise95
6.4.2 Vector equations with commutative noise96
6.4.3 General vector equations97
6.5 Runge-Kutta-like methods98
6.6 Implicit methods99
6.7 Weak solutions99
6.7.1 Second-order weak methods100
7 Fokker-Planck equations and reaction-diffusion systems102
7.1 Deriving the Fokker-Planck equation102
7.2 The probability current104
7.3 Absorbing and reflecting boundaries105
7.4 Stationary solutions for one dimension106
7.5 Physics:thermalization of a single particle107
7.6 Time-dependent solutions109
7.6.1 Green’s functions110
7.7 Calculating first-passage times111
7.7.1 The time to exit an interval111
7.7.2 The time to exit through one end of an interval113
7.8 Chemistry:reaction-diffusion equations116
7.9 Chemistry:pattern formation in reaction-diffusion systems119
8 Jumpprocesses127
8.1 The Poisson process127
8.2 Stochastic equations for jump processes130
8.3 The master equation131
8.4 Moments and the generating function133
8.5 Another simple jump process:“telegraph noise”134
8.6 Solving the master equation:a more complex example136
8.7 The general form of the master equation139
8.8 Biology:predator-prey systems140
8.9 Biology:neurons and stochastic resonance144
9 Levy processes151
9.1 Introduction151
9.2 The stable Levy processes152
9.2.1 Stochastic equations with the stable processes156
9.2.2 Numerical simulation157
9.3 Characterizing all the Levy processes159
9.4 Stochastic calculus for Levy processes162
9.4.1 The linear stochastic equation with a Levy process163
10 Modern probability theory166
10.1 Introduction166
10.2 The set of all samples167
10.3 The collection of all events167
10.4 The collection of events forms a sigma-algebra167
10.5 The probability measure169
10.6 Collecting the concepts:random variables171
10.7 Stochastic processes:filtrations and adapted processes174
10.7.1 Martingales175
10.8 Translating the modern language176
Appendix A Calculating Gaussian integrals181
References184
Index186
热门推荐
- 2664459.html
- 817021.html
- 2098452.html
- 3492430.html
- 128938.html
- 617789.html
- 829232.html
- 3774098.html
- 2052568.html
- 2625049.html
- http://www.ickdjs.cc/book_2341757.html
- http://www.ickdjs.cc/book_144996.html
- http://www.ickdjs.cc/book_62528.html
- http://www.ickdjs.cc/book_1388426.html
- http://www.ickdjs.cc/book_3420335.html
- http://www.ickdjs.cc/book_2424114.html
- http://www.ickdjs.cc/book_2652913.html
- http://www.ickdjs.cc/book_1402174.html
- http://www.ickdjs.cc/book_2112930.html
- http://www.ickdjs.cc/book_159526.html